a2 United States Patent

US009436605B2

10) Patent No.: US 9,436,605 B2

Chamberlain et al. 45) Date of Patent: Sep. 6, 2016
(54) CACHE COHERENCY APPARATUS AND (56) References Cited
METHOD MINIMIZING MEMORY U S. PATENT DOCUMENTS
WRITEBACK OPERATIONS -
5,463,565 A 10/1995 Cook: t al.
(71) Applicant: Intel Corporation, Santa Clara, CA 6,249,846 Bl 6/2001 V;.)I(l)];(;lei :t al.
(US) 6,263,405 Bl 7/2001 Irie et al.
6,272,603 B1* 8/2001 Ar_imilli etal. ... 711/146
(72) Inventors: Jeffrey D. Chamberlain, Tracy, CA ;’ggg’gég E% 1;%88? Eﬁlﬁseétail
(US); Vedaraman Geetha, Fremont, 8:489:822 B2 72013 Sun et al.
CA (US); Robert G. Blankenship, 2003/0140200 Al* 7/2003 Jamil et al. 711/145
Tacoma, WA (US); Yen-Cheng Liu, 20080320034 AL® 122008 Sugivaki . 711143
R . ugizaki c..ooovveiiein
goﬁiang’ 8§ gg ?Idr;antcﬁ Nlll"ga’ 2011/0161585 Al 6/2011 Kottapalli et al.
ortland, ; Herbert H. Hum, i)
Portland, OR (US); Sailesh Kottapalli, * cited by examiner
San Jose, CA (US)
Primary Examiner — Jared Rutz
(73) Assignee: INTEL CORPORATION, Santa Clara, Assistant Examiner — William E Baughman
CA (US) (74) Attorney, Agent, or Firm — Nicholson De Vos
Webster & Elliott LLP
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 57 ABSTRACT
US.C. 154(b) by 128 days. An apparatus and method for reducing or eliminating write-
. back operations. For example, one embodiment of a method
(21) Appl. No.: 14/136,131 comprises: detecting a first operation associated with a cache
. line at a first requestor cache; detecting that the cache line
22) Filed: Dec. 20, 2013 ’
(22) File ec = exists in a first cache in a modified (M) state; forwarding the
(65) Prior Publication Data cache line from the.: ﬁrs.t cache to the first requestor cache and
storing the cache line in the first requestor cache in a secon
toring th he 1 the first request h d
US 2015/0178206 Al Jun. 25, 2015 modified (M') state; detecting a second operation associated
with the cache line at a second requestor; responsively
(1) Int. Cl. forwarding the cache line from the first requestor cache to
Go6l’ 12/08 (2016.01) the second requestor cache and storing the cache line in the
q 2
(52) US.CL () second requestor cache in an owned (O) state if the cache
CPC ... GO6F 12/0817 (2013.01); GOGF 12/0815 line has not been modified in the first requestor cache; and
(2013.01) setting the cache line to a shared (S) state in the first
(58) Field of Classification Search requestor cache.

None
See application file for complete search history.

19 Claims, 15 Drawing Sheets

A

YRS} =
901

180
904

Hed) g
208

=3 8
907

e,

Ha
830 Mamory 840

X
g,

US 9,436,605 B2

Sheet 1 of 15

Sep. 6, 2016

U.S. Patent

9/1
LINN
JHIOVO
¢1

174

LINQ FHOVD V1vd

¢l

LINN m.h._. v1lvd

041 LINN
AHOW3N

—_——_———

091 (8)43LSN1D NOILNDIXA

9L (S)LINN
88309V
AHOWAW

291
(S)LINN
NOILND3X3

A

861 (S)LINN STT714 ¥3LSIDTY T¥IISAHd

e C——_—A_

2§l 1INN

1

=2

1213
LINA INJWFAHILTS

_ _.|||M

| MolvooTv/amwwnay | INISNG NOLLNO3X3

0S1 LINN

OFl LINN 30023d

2

[881 HO134 NOILDNYLSNI |

2

9€L LINN 81L NOILONYLSNI

0c1
LINN dN3 LNOH4

TL_PEL LINN IHOVD NOILONYLSNI

¢€l 1INN
NOLLOId3dd HONVYE

_ | 2
¥ JonmanyH

“ LINNOD [yo11.d30x3

_ 1l

8Ll
JLIEM
AJOWAN

MOvE JLIIWN

9l

J9VLS 3LN03X3

141

Av3yd AJON3N
/av3d

4318193y

47"

3TNAIHIS PNINYNIY

0Ll 80}

00711V {3d033d

dl Ol

/ 061 3409

70l
ONIQ033d
H1ONIT

90}

Vi 9ld

001 INM3dId ~——

US 9,436,605 B2

Sheet 2 of 15

Sep. 6, 2016

U.S. Patent

¢ '9ld
e |
| nzleluNn [217 SN
| ETORNOD] T o (NN SHovo oS |
oizmn | oA ==
YITIOUINOD |- = N oz | W90z
sng " SUNN | | o me| |(SILINN
0LZ LINN L 3OV | “ 3HOVO
INFOY W3LSAS | N0z 380D ¥20Z 3400

80¢ 01907
450ddnd
WI03dS

/ 00¢ 40SS300Yd

U.S. Patent Sep. 6, 2016 Sheet 3 of 15 US 9,436,605 B2

— 310

|
r B":lm PROCESSOR |™ = =
| e 295 |
e / | _— 30
7 [CONTROLLER
lPRO(?SC:SQR "““’“""Hy""g“_géo““ b~ MEMORY
CES LEMCH 390 |
| - —
IO E L _
O , OH 350 E
| a
: |

FIG. 3

US 9,436,605 B2

Sheet 4 of 15

Sep. 6, 2016

U.S. Patent

¥ Ol
v1iva
8y —— 0S¥
QN 3009 | s3omnaa | 3snow
JOVHOLS YIVa Ley WNOD ey {AUVOEAIN
0zy ‘_ i
SLy vy 1y 8Ly
¥0SSIO0Md o olany S30IA3Q O I9a14g SN
oy —/ q — — — _
g6y —1 4 | zey — _ g0y
|
g6y — d-d 067 13SdIHO A dd L ey _%mmmoom%o_
vy — JE
¥y zsp
——
08y d~d d~d d-d d~d 0LY
98y — ggy — \ /lm% Lo
05y
=289 4
oW NI
ey A%
AHOWIN AHOWAW
¥0SS300Hd0D
/MOSS300¥d H0SS3004d

/ 00¥

US 9,436,605 B2

Sheet 5 of 15

Sep. 6, 2016

U.S. Patent

12%4
AHOWZIN

4%
AHOWEN

GOl
GG
O/t AOV9I1
06¥ gy —1 3/l
N 138dHO | g
ENI\» « %vl\» «
-——-]
0y dd d-d d-d d-d 0Ly
9By — ggy — \ \ L g
8Ly
0y
=28 Uy —z
10 1
HOSSIO0Hd H0SS300Hd
e
\ 1S _
| s3oinzaon

PO PR —

\ e

US 9,436,605 B2

Sheet 6 of 15

Sep. 6, 2016

U.S. Patent

99l
715 (SILIND
0v9 0£9 ¥ITIONINOD
LNnAvdsia | | SNV s AHOWIW
03LYHOIINI
916 (SILINN I S
¥3TIONLNOD
sng | 1 €09 1SLLINA LOINNOOHALNI 029 (S)40SSIO0UA0D
i _
_ 90S (S)LINN FHOVO QFUVHS |
F—————— =
b L npog |
boNvos V08
“ L (Slunn | " emw | |(S)NN
01 LINN | o AHOVO A
INIOV WILSAS | Neos 0D | ¥205 3400 dIHO ¥ NO W3LSAS
019 HOSSIO0Md NOILYIITddY

US 9,436,605 B2

Sheet 7 of 15

Sep. 6, 2016

U.S. Patent

L9l

<02 IOYNONVT IEAFTHOIH

804 HINGNOD
138 NOILONHLSNI
JAILYNSILTY

Y04 d371dWNOD 98X

90, 3000 AYVNIE 98X

¢14 d3143aANQD
NOILONHLSNI

0123000 AYVYNIG
13S NOILONHISNI

JHYMLA0S INLYNYILY
v SmaH N T
M0 L3S ,o_ﬁ_ LOMYLSNI #1.2 3400 138 NOILONYLSNI
99X INO LSV 98X NY LNOHLIM ¥OSSIO0Ud
1V HLIM ¥0SSI00Nd

US 9,436,605 B2

Sheet 8 of 15

Sep. 6, 2016

U.S. Patent

V8 'Old

ov8
AloWwapy WalsAS

0£8
28y awl
a8y awoH Ze8
oM
A
/
1€8 P
uswadeuey ayose)
7 A 7 .
D —— e ; Vo I i R | E———— i
" €28 ; " (441 “ " 18 m
m 21 < ! A <1 7 4 |
' [o18 518 || [vis €18 | | [zi8 T8 |
2T n < T n [2 n n §
: 908 508 ! : 08 €08 | m 08 108 |
‘ 310D 240) ! i 340D alo) ! ' 3109 310D !
ﬁ.-------:nl:--------._ ‘ , 1111111111111111111111 & ffi;-:--,:---;--,:_
Y f f
£58 dINPoN 258 3NPON 158 2inpo

US 9,436,605 B2

Sheet 9 of 15

Sep. 6, 2016

U.S. Patent

48 'Old

ov8
AJOWIRIA WIDISAS

| 0€8

m US98y SWOoH ze8

! o1

! 1€8

m uswageueyp\ ayoe)

| y Y A
| vz8 R m €28 | || 128 |
| 71 i 2l a |y i
m b18 | | £18 m m e | ! 118 | |
m T m | no~ m 2 o 21 m
| v08 o €08 | . 208 1 18|
: 210D “ “ 310D i u 310D ” “ 310D m

US 9,436,605 B2

Sheet 10 of 15

Sep. 6, 2016

08 "Old
ovs
Alowa WIsAS
A \
qzes 43
oM o711
. SRR/, . fm e e A LN,
: q0€8 m m BOES !
' juady qres SRS eres ady !
' WOH juawadeuepyy ayoe) T uawadeuepy ayoe) SWOH !
e RN S N O S S
| vzs 0 [ezs | s | | 178 |
; 71 € m m a €7 A g b g2 m
m 18 L e ! m 7 | 1 18 | !
! S T [e T I g B !
m v08 L £08 m | 208 o 108 m
! 3409 ! ! 8107 : ; 210D " ! 2107 !
(T 39d0s) (T 13%005)
168 105$82014 068 105532014

U.S. Patent

US 9,436,605 B2

Sheet 11 of 15

Sep. 6, 2016

U.S. Patent

6

Bi4

OV8 AJOLUBR

s

g
Tl LA . »
Wy g i

AT .. 14 .m.»

b k s SOy - o .
e i s

L06
s

i SRR
B A

NNt B
T &

Fiee

i

Y

US 9,436,605 B2

Sheet 12 of 15

Sep. 6, 2016

U.S. Patent

s
A
R

: zé¢¥;+a¢¢@uﬁ5amﬁ%$sgzz;a

oy i e T
Ty s

s .,-.-..-.S.&Muuw.v

i AT ."m..vaﬁﬂ MA.»U\ i

oy

R

i " d.\n,m".mx...\...w.w.wmﬁ.

‘e g it 0 00T

i \gqgkgwﬁﬁm.

D T Lt i

. ol St
P

500t

I

A 2

g

00T,
AR

5 il

2

US 9,436,605 B2

Sheet 13 of 15

Sep. 6, 2016

U.S. Patent

Ll "Old

ﬁ anNdg ,_

\

SOTT
FHOVD HO1S3N0D3Y 1SYHId NI 3IVIS S OL 13S

/

vott
31VLS O NI ¥O1S3N0D3IY ANOD3IS OL QHVMYOS

N

€011
ANIT ONIAJIQOIN HOLSINDIY 1SHI4 OL
H4OIdd INIT IHOVD S1SINVIY YOLSINDIY ANOIIS

0

01t
JHOVD SHOLSINDIY 1S¥i4 OL
AN FHOVI 40 AdOD N QHVMYOS

A

101t
J01S3IN0IY 1Sd14 INOYHS 3INIT IHOVI Y04 NOILYY3IdO
VIVQA dv3Y OL 3SNOJS3Y NJ 31v1S N ¥33d 103130

A

ﬁ 1¥vls H

US 9,436,605 B2

Sheet 14 of 15

Sep. 6, 2016

U.S. Patent

(A E

ov8

Adowa WsAS

068 105593044

ezes

o1
...................................... S 2
e0Es "
oozt . BTER jusdy |
ayoseny Asoroauig [~ 71 wudwadeuen ayoed aWOoH |
: ws | 1z8 m
L2 . 2 a m
m zig | 1| 118 | |
AT S T I T I |
m 08 Lo 108 !
! 2407 b 210D i

(T 13}005)

US 9,436,605 B2

Sheet 15 Of 15

Sep° 6, 2016

U.S. Patent

geL b4
ONISHN

E1ET

e zrngy. P

s

-
—_—

zza
L Gas s L

i R
............a........l...&....&.,......l.i i A

Wiy

s
,..m.vwaww@..ié....e:k

H
VH v

mamgwﬁ

o
o R
o i
‘.n....._(l.% —_—
i)
N 5
it
ot

i RO

1328

veL b4

NISIW

e B

v&dﬁﬂm‘}ﬁf .E,#.mk

i S e
et i
s g f)w

EPPORS 128
RS
AT

17
S It
FEGEEG PG i oy

B s SO :

e
S
ks,
e ;

o oo Y
e AR

wasst
gl o

wwmw.............vi...k(?

Aodmin M

¥H v

Tpben e .a.u".“uw&?w
ﬂ....“.w.,ﬁ,«.;
.(aﬁaSQ\w.mn‘w#w».mﬁv. . i

s AN ,}%A.\ %

e PR
B i

e i

= R

US 9,436,605 B2

1
CACHE COHERENCY APPARATUS AND
METHOD MINIMIZING MEMORY
WRITEBACK OPERATIONS

BACKGROUND

1. Field of the Invention

This invention relates generally to the field of computer
processors. More particularly, the invention relates to a
cache coherency apparatus and method for minimizing
memory writeback operations.

2. Description of the Related Art

The most popular multi-socket cache coherence protocols
used today are MESI (Modified Exclusive Shared Invalid),
MOESI (Modified Owned Exclusive Shared Invalid), and
MESIM' (where the M' state designates a modified line
which has been read by a peer but is not immediately written
back to memory). MESI and MESIM' both have the advan-
tage of providing exclusive ownership to the first socket to
read a line after receiving a dirty snoop response from
another socket that recently wrote its copy of the line.

The benefit that MESIM' has over MESI is that MESI
requires the line to be immediately be written to memory
before providing exclusive ownership to the first reader,
while the M' state of MESIM' allows that write-back to
memory to be delayed until a second read (by some other
socket) occurs. However, if there is more than a single reader
after each writer, both MESI and MESIM' will eventually
write the dirty data for each write to memory.

MOESI, on the other hand, can eliminate the write-back
to memory. For example, the “Owned” (O) state indicates
that the owner is one of several valid copies of the cache
line, but has the exclusive right to make changes to it. It must
broadcast any changes to all other caches sharing the line.
The introduction of Owned state allows dirty sharing of data
because a modified cache line can be moved between
various caches without writing back the cache line to main
memory. The cache line may be changed to the Modified
state after invalidating all shared copies, or changed to the
Shared state by writing the modifications back to main
memory. However, MOESI does not allow the first reader
after each writer to get an exclusive copy of the line, which
can degrade performance on some Online Transaction Pro-
cessing (OLTP) workloads.

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the present invention can be
obtained from the following detailed description in conjunc-
tion with the following drawings, in which:

FIG. 1A s a block diagram illustrating both an exemplary
in-order pipeline and an exemplary register renaming, out-
of-order issue/execution pipeline according to embodiments
of the invention;

FIG. 1B is a block diagram illustrating both an exemplary
embodiment of an in-order architecture core and an exem-
plary register renaming, out-of-order issue/execution archi-
tecture core to be included in a processor according to
embodiments of the invention;

FIG. 2 is a block diagram of a single core processor and
a multicore processor with integrated memory controller and
graphics according to embodiments of the invention;

FIG. 3 illustrates a block diagram of a system in accor-
dance with one embodiment of the present invention;

FIG. 4 illustrates a block diagram of a second system in
accordance with an embodiment of the present invention;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 5 illustrates a block diagram of a third system in
accordance with an embodiment of the present invention;

FIG. 6 illustrates a block diagram of a system on a chip
(SoC) in accordance with an embodiment of the present
invention;

FIG. 7 illustrates a block diagram contrasting the use of
a software instruction converter to convert binary instruc-
tions in a source instruction set to binary instructions in a
target instruction set according to embodiments of the inven-
tion;

FIGS. 8A-C illustrate different exemplary multi-core and
hierarchical cache arrangements;

FIG. 9 is a transaction diagram illustrating one embodi-
ment of an MESIM' implementation;

FIG. 10 is a transaction diagram illustrating one embodi-
ment of an MESIM'O implementation;

FIG. 11 illustrates one embodiment of a method for a
MESIM'O cache coherency implementation;

FIG. 12 illustrates one embodiment of a home agent with
a directory cache; and

FIGS. 13A-B are transaction diagrams showing a reduc-
tion in memory access resulting from a directory cache.

DETAILED DESCRIPTION

In the following description, for the purposes of expla-
nation, numerous specific details are set forth in order to
provide a thorough understanding of the embodiments of the
invention described below. It will be apparent, however, to
one skilled in the art that the embodiments of the invention
may be practiced without some of these specific details. In
other instances, well-known structures and devices are
shown in block diagram form to avoid obscuring the under-
lying principles of the embodiments of the invention.

Exemplary Processor Architectures and Data Types

FIG. 1A is a block diagram illustrating both an exemplary
in-order pipeline and an exemplary register renaming, out-
of-order issue/execution pipeline according to embodiments
of'the invention. FIG. 1B is a block diagram illustrating both
an exemplary embodiment of an in-order architecture core
and an exemplary register renaming, out-of-order issue/
execution architecture core to be included in a processor
according to embodiments of the invention. The solid lined
boxes in FIGS. 1A-B illustrate the in-order pipeline and
in-order core, while the optional addition of the dashed lined
boxes illustrates the register renaming, out-of-order issue/
execution pipeline and core. Given that the in-order aspect
is a subset of the out-of-order aspect, the out-of-order aspect
will be described.

In FIG. 1A, a processor pipeline 100 includes a fetch stage
102, a length decode stage 104, a decode stage 106, an
allocation stage 108, a renaming stage 110, a scheduling
(also known as a dispatch or issue) stage 112, a register
read/memory read stage 114, an execute stage 116, a write
back/memory write stage 118, an exception handling stage
122, and a commit stage 124.

FIG. 1B shows processor core 190 including a front end
unit 130 coupled to an execution engine unit 150, and both
are coupled to a memory unit 170. The core 190 may be a
reduced instruction set computing (RISC) core, a complex
instruction set computing (CISC) core, a very long instruc-
tion word (VLIW) core, or a hybrid or alternative core type.
As yet another option, the core 190 may be a special-purpose
core, such as, for example, a network or communication

US 9,436,605 B2

3

core, compression engine, coprocessor core, general purpose
computing graphics processing unit (GPGPU) core, graphics
core, or the like.

The front end unit 130 includes a branch prediction unit
132 coupled to an instruction cache unit 134, which is
coupled to an instruction translation lookaside buffer (TLB)
136, which is coupled to an instruction fetch unit 138, which
is coupled to a decode unit 140. The decode unit 140 (or
decoder) may decode instructions, and generate as an output
one or more micro-operations, micro-code entry points,
microinstructions, other instructions, or other control sig-
nals, which are decoded from, or which otherwise reflect, or
are derived from, the original instructions. The decode unit
140 may be implemented using various different mecha-
nisms. Examples of suitable mechanisms include, but are not
limited to, look-up tables, hardware implementations, pro-
grammable logic arrays (PLAs), microcode read only
memories (ROMs), etc. In one embodiment, the core 190
includes a microcode ROM or other medium that stores
microcode for certain macroinstructions (e.g., in decode unit
140 or otherwise within the front end unit 130). The decode
unit 140 is coupled to a rename/allocator unit 152 in the
execution engine unit 150.

The execution engine unit 150 includes the rename/
allocator unit 152 coupled to a retirement unit 154 and a set
of one or more scheduler unit(s) 156. The scheduler unit(s)
156 represents any number of different schedulers, including
reservations stations, central instruction window, etc. The
scheduler unit(s) 156 is coupled to the physical register
file(s) unit(s) 158. Each of the physical register file(s) units
158 represents one or more physical register files, different
ones of which store one or more different data types, such as
scalar integer, scalar floating point, packed integer, packed
floating point, vector integer, vector floating point, status
(e.g., an instruction pointer that is the address of the next
instruction to be executed), etc. In one embodiment, the
physical register file(s) unit 158 comprises a vector registers
unit, a write mask registers unit, and a scalar registers unit.
These register units may provide architectural vector regis-
ters, vector mask registers, and general purpose registers.
The physical register file(s) unit(s) 158 is overlapped by the
retirement unit 154 to illustrate various ways in which
register renaming and out-of-order execution may be imple-
mented (e.g., using a reorder buffer(s) and a retirement
register file(s); using a future file(s), a history buffer(s), and
a retirement register file(s); using a register maps and a pool
of registers; etc.). The retirement unit 154 and the physical
register file(s) unit(s) 158 are coupled to the execution
cluster(s) 160. The execution cluster(s) 160 includes a set of
one or more execution units 162 and a set of one or more
memory access units 164. The execution units 162 may
perform various operations (e.g., shifts, addition, subtrac-
tion, multiplication) and on various types of data (e.g., scalar
floating point, packed integer, packed floating point, vector
integer, vector floating point). While some embodiments
may include a number of execution units dedicated to
specific functions or sets of functions, other embodiments
may include only one execution unit or multiple execution
units that all perform all functions. The scheduler unit(s)
156, physical register file(s) unit(s) 158, and execution
cluster(s) 160 are shown as being possibly plural because
certain embodiments create separate pipelines for certain
types of data/operations (e.g., a scalar integer pipeline, a
scalar floating point/packed integer/packed floating point/
vector integer/vector floating point pipeline, and/or a
memory access pipeline that each have their own scheduler
unit, physical register file(s) unit, and/or execution cluster—

10

15

20

25

30

35

40

45

50

55

60

65

4

and in the case of a separate memory access pipeline, certain
embodiments are implemented in which only the execution
cluster of this pipeline has the memory access unit(s) 164).
It should also be understood that where separate pipelines
are used, one or more of these pipelines may be out-of-order
issue/execution and the rest in-order.

The set of memory access units 164 is coupled to the
memory unit 170, which includes a data TLB unit 172
coupled to a data cache unit 174 coupled to a level 2 (L2)
cache unit 176. In one exemplary embodiment, the memory
access units 164 may include a load unit, a store address
unit, and a store data unit, each of which is coupled to the
data TLB unit 172 in the memory unit 170. The instruction
cache unit 134 is further coupled to a level 2 (1.2) cache unit
176 in the memory unit 170. The L2 cache unit 176 is
coupled to one or more other levels of cache and eventually
to a main memory.

By way of example, the exemplary register renaming,
out-of-order issue/execution core architecture may imple-
ment the pipeline 100 as follows: 1) the instruction fetch 138
performs the fetch and length decoding stages 102 and 104;
2) the decode unit 140 performs the decode stage 106; 3) the
rename/allocator unit 152 performs the allocation stage 108
and renaming stage 110; 4) the scheduler unit(s) 156 per-
forms the schedule stage 112; 5) the physical register file(s)
unit(s) 158 and the memory unit 170 perform the register
read/memory read stage 114; the execution cluster 160
perform the execute stage 116; 6) the memory unit 170 and
the physical register file(s) unit(s) 158 perform the write
back/memory write stage 118; 7) various units may be
involved in the exception handling stage 122; and 8) the
retirement unit 154 and the physical register file(s) unit(s)
158 perform the commit stage 124.

The core 190 may support one or more instructions sets
(e.g., the x86 instruction set (with some extensions that have
been added with newer versions); the MIPS instruction set
of MIPS Technologies of Sunnyvale, Calif.; the ARM
instruction set (with optional additional extensions such as
NEON) of ARM Holdings of Sunnyvale, Calif.), including
the instruction(s) described herein. In one embodiment, the
core 190 includes logic to support a packed data instruction
set extension (e.g., AVX1, AVX2, and/or some form of the
generic vector friendly instruction format (U=0 and/or U=1),
described below), thereby allowing the operations used by
many multimedia applications to be performed using packed
data.

It should be understood that the core may support multi-
threading (executing two or more parallel sets of operations
or threads), and may do so in a variety of ways including
time sliced multithreading, simultaneous multithreading
(where a single physical core provides a logical core for each
of the threads that physical core is simultaneously multi-
threading), or a combination thereof (e.g., time sliced fetch-
ing and decoding and simultaneous multithreading thereat-
ter such as in the Intel® Hyperthreading technology).

While register renaming is described in the context of
out-of-order execution, it should be understood that register
renaming may be used in an in-order architecture. While the
illustrated embodiment of the processor also includes sepa-
rate instruction and data cache units 134/174 and a shared
L2cache unit 176, alternative embodiments may have a
single internal cache for both instructions and data, such as,
for example, a Level 1 (I.1) internal cache, or multiple levels
of internal cache. In some embodiments, the system may
include a combination of an internal cache and an external

US 9,436,605 B2

5

cache that is external to the core and/or the processor.
Alternatively, all of the cache may be external to the core
and/or the processor.

FIG. 2 is a block diagram of a processor 200 that may
have more than one core, may have an integrated memory
controller, and may have integrated graphics according to
embodiments of the invention. The solid lined boxes in FIG.
2 illustrate a processor 200 with a single core 202A, a system
agent 210, a set of one or more bus controller units 216,
while the optional addition of the dashed lined boxes illus-
trates an alternative processor 200 with multiple cores
202A-N, a set of one or more integrated memory controller
unit(s) 214 in the system agent unit 210, and special purpose
logic 208.

Thus, different implementations of the processor 200 may
include: 1) a CPU with the special purpose logic 208 being
integrated graphics and/or scientific (throughput) logic
(which may include one or more cores), and the cores
202A-N being one or more general purpose cores (e.g.,
general purpose in-order cores, general purpose out-of-order
cores, a combination of the two); 2) a coprocessor with the
cores 202A-N being a large number of special purpose cores
intended primarily for graphics and/or scientific (through-
put); and 3) a coprocessor with the cores 202A-N being a
large number of general purpose in-order cores. Thus, the
processor 200 may be a general-purpose processor, copro-
cessor or special-purpose processor, such as, for example, a
network or communication processor, compression engine,
graphics processor, GPGPU (general purpose graphics pro-
cessing unit), a high-throughput many integrated core (MIC)
coprocessor (including 30 or more cores), embedded pro-
cessor, or the like. The processor may be implemented on
one or more chips. The processor 200 may be a part of
and/or may be implemented on one or more substrates using
any of a number of process technologies, such as, for
example, BICMOS, CMOS, or NMOS.

The memory hierarchy includes one or more levels of
cache within the cores, a set or one or more shared cache
units 206, and external memory (not shown) coupled to the
set of integrated memory controller units 214. The set of
shared cache units 206 may include one or more mid-level
caches, such as level 2 (L2), level 3 (L3), level 4 (L4), or
other levels of cache, a last level cache (LLC), and/or
combinations thereof. While in one embodiment a ring
based interconnect unit 212 interconnects the integrated
graphics logic 208, the set of shared cache units 206, and the
system agent unit 210/integrated memory controller unit(s)
214, alternative embodiments may use any number of well-
known techniques for interconnecting such units. In one
embodiment, coherency is maintained between one or more
cache units 206 and cores 202-A-N.

In some embodiments, one or more of the cores 202A-N
are capable of multi-threading. The system agent 210
includes those components coordinating and operating cores
202A-N. The system agent unit 210 may include for
example a power control unit (PCU) and a display unit. The
PCU may be or include logic and components needed for
regulating the power state of the cores 202A-N and the
integrated graphics logic 208. The display unit is for driving
one or more externally connected displays.

The cores 202A-N may be homogenous or heterogeneous
in terms of architecture instruction set; that is, two or more
of the cores 202A-N may be capable of execution the same
instruction set, while others may be capable of executing
only a subset of that instruction set or a different instruction

15

20

35

40

45

55

6

set. In one embodiment, the cores 202A-N are heteroge-
neous and include both the “small” cores and “big” cores
described below.

FIGS. 3-6 are block diagrams of exemplary computer
architectures. Other system designs and configurations
known in the arts for laptops, desktops, handheld PCs,
personal digital assistants, engineering workstations, serv-
ers, network devices, network hubs, switches, embedded
processors, digital signal processors (DSPs), graphics
devices, video game devices, set-top boxes, micro control-
lers, cell phones, portable media players, hand held devices,
and various other electronic devices, are also suitable. In
general, a huge variety of systems or electronic devices
capable of incorporating a processor and/or other execution
logic as disclosed herein are generally suitable.

Referring now to FIG. 3, shown is a block diagram of a
system 300 in accordance with one embodiment of the
present invention. The system 300 may include one or more
processors 310, 315, which are coupled to a controller hub
320. In one embodiment the controller hub 320 includes a
graphics memory controller hub (GMCH) 390 and an Input/
Output Hub (IOH) 350 (which may be on separate chips);
the GMCH 390 includes memory and graphics controllers to
which are coupled memory 340 and a coprocessor 345; the
IOH 350 is couples input/output (I/0) devices 360 to the
GMCH 390. Alternatively, one or both of the memory and
graphics controllers are integrated within the processor (as
described herein), the memory 340 and the coprocessor 345
are coupled directly to the processor 310, and the controller
hub 320 in a single chip with the IOH 350.

The optional nature of additional processors 315 is
denoted in FIG. 3 with broken lines. Each processor 310,
315 may include one or more of the processing cores
described herein and may be some version of the processor
200.

The memory 340 may be, for example, dynamic random
access memory (DRAM), phase change memory (PCM), or
a combination of the two. For at least one embodiment, the
controller hub 320 communicates with the processor(s) 310,
315 via a multi-drop bus, such as a frontside bus (FSB),
point-to-point interface such as QuickPath Interconnect
(QPI), or similar connection 395.

In one embodiment, the coprocessor 345 is a special-
purpose processor, such as, for example, a high-throughput
MIC processor, a network or communication processor,
compression engine, graphics processor, GPGPU, embed-
ded processor, or the like. In one embodiment, controller hub
320 may include an integrated graphics accelerator.

There can be a variety of differences between the physical
resources 310, 315 in terms of a spectrum of metrics of merit
including architectural, microarchitectural, thermal, power
consumption characteristics, and the like.

In one embodiment, the processor 310 executes instruc-
tions that control data processing operations of a general
type. Embedded within the instructions may be coprocessor
instructions. The processor 310 recognizes these coproces-
sor instructions as being of a type that should be executed by
the attached coprocessor 345. Accordingly, the processor
310 issues these coprocessor instructions (or control signals
representing coprocessor instructions) on a coprocessor bus
or other interconnect, to coprocessor 345. Coprocessor(s)
345 accept and execute the received coprocessor instruc-
tions.

Referring now to FIG. 4, shown is a block diagram of a
first more specific exemplary system 400 in accordance with
an embodiment of the present invention. As shown in FIG.
4, multiprocessor system 400 is a point-to-point interconnect

US 9,436,605 B2

7

system, and includes a first processor 470 and a second
processor 480 coupled via a point-to-point interconnect 450.
Each of processors 470 and 480 may be some version of the
processor 200. In one embodiment of the invention, proces-
sors 470 and 480 are respectively processors 310 and 315,
while coprocessor 438 is coprocessor 345. In another
embodiment, processors 470 and 480 are respectively pro-
cessor 310 coprocessor 345.

Processors 470 and 480 are shown including integrated
memory controller (IMC) units 472 and 482, respectively.
Processor 470 also includes as part of its bus controller units
point-to-point (P-P) interfaces 476 and 478; similarly, sec-
ond processor 480 includes P-P interfaces 486 and 488.
Processors 470, 480 may exchange information via a point-
to-point (P-P) interface 450 using P-P interface circuits 478,
488. As shown in FIG. 4, IMCs 472 and 482 couple the
processors to respective memories, namely a memory 432
and a memory 434, which may be portions of main memory
locally attached to the respective processors.

Processors 470, 480 may each exchange information with
a chipset 490 via individual P-P interfaces 452, 454 using
point to point interface circuits 476, 494, 486, 498. Chipset
490 may optionally exchange information with the copro-
cessor 438 via a high-performance interface 439. In one
embodiment, the coprocessor 438 is a special-purpose pro-
cessor, such as, for example, a high-throughput MIC pro-
cessor, a network or communication processor, compression
engine, graphics processor, GPGPU, embedded processor,
or the like.

A shared cache (not shown) may be included in either
processor or outside of both processors, yet connected with
the processors via P-P interconnect, such that either or both
processors’ local cache information may be stored in the
shared cache if a processor is placed into a low power mode.

Chipset 490 may be coupled to a first bus 416 via an
interface 496. In one embodiment, first bus 416 may be a
Peripheral Component Interconnect (PCI) bus, or a bus such
as a PCI Express bus or another third generation 1/O
interconnect bus, although the scope of the present invention
is not so limited.

As shown in FIG. 4, various [/O devices 414 may be
coupled to first bus 416, along with a bus bridge 418 which
couples first bus 416 to a second bus 420. In one embodi-
ment, one or more additional processor(s) 415, such as
coprocessors, high-throughput MIC processors, GPGPU’s,
accelerators (such as, e.g., graphics accelerators or digital
signal processing (DSP) units), field programmable gate
arrays, or any other processor, are coupled to first bus 416.
In one embodiment, second bus 420 may be a low pin count
(LPC) bus. Various devices may be coupled to a second bus
420 including, for example, a keyboard and/or mouse 422,
communication devices 427 and a storage unit 428 such as
a disk drive or other mass storage device which may include
instructions/code and data 430, in one embodiment. Further,
an audio 1/0 424 may be coupled to the second bus 420.
Note that other architectures are possible. For example,
instead of the point-to-point architecture of FIG. 4, a system
may implement a multi-drop bus or other such architecture.

Referring now to FIG. 5, shown is a block diagram of a
second more specific exemplary system 500 in accordance
with an embodiment of the present invention. Like elements
in FIGS. 4 and 5 bear like reference numerals, and certain
aspects of FIG. 4 have been omitted from FIG. 5 in order to
avoid obscuring other aspects of FIG. 5.

FIG. 5 illustrates that the processors 470, 480 may include
integrated memory and I/O control logic (“CL”) 472 and
482, respectively. Thus, the CL 472, 482 include integrated

10

15

20

25

30

35

40

45

50

55

60

65

8

memory controller units and include /O control logic. FIG.
5 illustrates that not only are the memories 432, 434 coupled
to the CL 472, 482, but also that I/O devices 514 are also
coupled to the control logic 472, 482. Legacy /O devices
515 are coupled to the chipset 490.

Referring now to FIG. 6, shown is a block diagram of a
SoC 600 in accordance with an embodiment of the present
invention. Similar elements in FIG. 2 bear like reference
numerals. Also, dashed lined boxes are optional features on
more advanced SoCs. In FIG. 6, an interconnect unit(s) 602
is coupled to: an application processor 610 which includes
a set of one or more cores 202A-N and shared cache unit(s)
206; a system agent unit 210; a bus controller unit(s) 216; an
integrated memory controller unit(s) 214; a set or one or
more coprocessors 620 which may include integrated graph-
ics logic, an image processor, an audio processor, and a
video processor; an static random access memory (SRAM)
unit 630; a direct memory access (DMA) unit 632; and a
display unit 640 for coupling to one or more external
displays. In one embodiment, the coprocessor(s) 620 include
a special-purpose processor, such as, for example, a network
or communication processor, compression engine, GPGPU,
a high-throughput MIC processor, embedded processor, or
the like.

Embodiments of the mechanisms disclosed herein may be
implemented in hardware, software, firmware, or a combi-
nation of such implementation approaches. Embodiments of
the invention may be implemented as computer programs or
program code executing on programmable systems compris-
ing at least one processor, a storage system (including
volatile and non-volatile memory and/or storage elements),
at least one input device, and at least one output device.

Program code, such as code 430 illustrated in FIG. 4, may
be applied to input instructions to perform the functions
described herein and generate output information. The out-
put information may be applied to one or more output
devices, in known fashion. For purposes of this application,
a processing system includes any system that has a proces-
sor, such as, for example; a digital signal processor (DSP),
a microcontroller, an application specific integrated circuit
(ASIC), or a microprocessor.

The program code may be implemented in a high level
procedural or object oriented programming language to
communicate with a processing system. The program code
may also be implemented in assembly or machine language,
if desired. In fact, the mechanisms described herein are not
limited in scope to any particular programming language. In
any case, the language may be a compiled or interpreted
language.

One or more aspects of at least one embodiment may be
implemented by representative instructions stored on a
machine-readable medium which represents various logic
within the processor, which when read by a machine causes
the machine to fabricate logic to perform the techniques
described herein. Such representations, known as “IP cores”
may be stored on a tangible, machine readable medium and
supplied to various customers or manufacturing facilities to
load into the fabrication machines that actually make the
logic or processor.

Such machine-readable storage media may include, with-
out limitation, non-transitory, tangible arrangements of
articles manufactured or formed by a machine or device,
including storage media such as hard disks, any other type
of disk including floppy disks, optical disks, compact disk
read-only memories (CD-ROMs), compact disk rewritable’s
(CD-RWs), and magneto-optical disks, semiconductor
devices such as read-only memories (ROMs), random

US 9,436,605 B2

9

access memories (RAMs) such as dynamic random access
memories (DRAMs), static random access memories
(SRAMs), erasable programmable read-only memories
(EPROMs), flash memories, electrically erasable program-
mable read-only memories (EEPROMs), phase change
memory (PCM), magnetic or optical cards, or any other type
of media suitable for storing electronic instructions.

Accordingly, embodiments of the invention also include
non-transitory, tangible machine-readable media containing
instructions or containing design data, such as Hardware
Description Language (HDL), which defines structures, cir-
cuits, apparatuses, processors and/or system features
described herein. Such embodiments may also be referred to
as program products.

In some cases, an instruction converter may be used to
convert an instruction from a source instruction set to a
target instruction set. For example, the instruction converter
may translate (e.g., using static binary translation, dynamic
binary translation including dynamic compilation), morph,
emulate, or otherwise convert an instruction to one or more
other instructions to be processed by the core. The instruc-
tion converter may be implemented in software, hardware,
firmware, or a combination thereof. The instruction con-
verter may be on processor, off processor, or part on and part
off processor.

FIG. 7 is a block diagram contrasting the use of a software
instruction converter to convert binary instructions in a
source instruction set to binary instructions in a target
instruction set according to embodiments of the invention.
In the illustrated embodiment, the instruction converter is a
software instruction converter, although alternatively the
instruction converter may be implemented in software, firm-
ware, hardware, or various combinations thereof. FIG. 7
shows a program in a high level language 702 may be
compiled using an x86 compiler 704 to generate x86 binary
code 706 that may be natively executed by a processor with
at least one x86 instruction set core 716. The processor with
at least one x86 instruction set core 716 represents any
processor that can perform substantially the same functions
as an Intel processor with at least one x86 instruction set
core by compatibly executing or otherwise processing (1) a
substantial portion of the instruction set of the Intel x86
instruction set core or (2) object code versions of applica-
tions or other software targeted to run on an Intel processor
with at least one x86 instruction set core, in order to achieve
substantially the same result as an Intel processor with at
least one x86 instruction set core. The x86 compiler 704
represents a compiler that is operable to generate x86 binary
code 706 (e.g., object code) that can, with or without
additional linkage processing, be executed on the processor
with at least one x86 instruction set core 716. Similarly, FI1G.
7 shows the program in the high level language 702 may be
compiled using an alternative instruction set compiler 708 to
generate alternative instruction set binary code 710 that may
be natively executed by a processor without at least one x86
instruction set core 714 (e.g., a processor with cores that
execute the MIPS instruction set of MIPS Technologies of
Sunnyvale, Calif. and/or that execute the ARM instruction
set of ARM Holdings of Sunnyvale, Calif.). The instruction
converter 712 is used to convert the x86 binary code 706 into
code that may be natively executed by the processor without
an x86 instruction set core 714. This converted code is not
likely to be the same as the alt ernative instruction set binary
code 710 because an instruction converter capable of this is
difficult to make; however, the converted code will accom-
plish the general operation and be made up of instructions
from the alternative instruction set. Thus, the instruction

20

25

30

40

45

50

55

10

converter 712 represents software, firmware, hardware, or a
combination thereof that, through emulation, simulation or
any other process, allows a processor or other electronic
device that does not have an x86 instruction set processor or
core to execute the x86 binary code 706.

Cache Coherency Apparatus and Method
Minimizing Memory Writeback Operations

The embodiments of the invention described herein pro-
vide for efficient processing of load requests that hit modi-
fied data in a peer cache, which also reduces write-backs of
the dirty data to memory. One embodiment combines the
benefits of MOESI and MESIM' by adding an M’ state to the
MOESI protocol. The M' state provides the performance
benefit of providing the first reader an Exclusive (E) copy of
the data, while the Owned (O) state allows the processor to
potentially delay the write-back to memory indefinitely. The
former maintains nominal performance on server workloads
where multi-writer sequences are originating while the latter
maximizes the potential savings on memory bandwidth and
power on single-writer-multi-reader sequences.

In addition, one embodiment of the invention enhances
the traditional cache coherence protocols that minimize
extraneous writes to memory for shared cache lines which
are intermittently written by the software threads running on
the system (potentially reducing the writes to memory to
zero), without sacrificing the performance benefits already
inherent in existing cache coherence protocols. In one
embodiment, it improves upon MESIM' by enabling
MESIM' to delay the write back to memory indefinitely for
a shared line that is periodically written, if that line is hot
enough to never be evicted from the last level cache. In one
embodiment, it improves upon MOESI, by giving MOESI
an intermediate state between M and O (M') which allows
MOESI to delay the transition from modified to shared until
after it is confirmed that the first reader does not also want
to write the cache line.

Embodiments of the invention described herein may be
implemented on any type of computer architecture which
utilizes a cache coherency protocol including those with
multi-core processors and/or multi-processor systems.
FIGS. 8A-C illustrate three exemplary embodiments of a
system/processor architecture.

FIG. 8A illustrates a processor with six cores 801-806
each having a dedicated L. 1 cache 811-816, respectively.
The cores are logically grouped into modules 851-851
comprising two cores sharing a single [.2 cache 821-823.
The exemplary processor also includes a home agent 830
with cache management logic 831 for implementing the
cache coherency techniques described herein; a lower level
cache (LLC) (e.g., an L3 cache) and system memory 840.
FIG. 8B illustrates another embodiment with four cores
801-804 but in this embodiment each of the cores 801-804
has a dedicated L2 cache 821-824. FIG. 8C illustrates yet
another embodiment with multiple processors 890 and 891
(coupled to different system sockets as indicated). Processor
890 includes two cores 801-802 each having an [1 cache
811-812 and [.2cache 821-822, respectively; a home agent
830a with cache management logic 831a and a lower level
cache (LLC) 832qa . Similarly, processor 891 includes two
cores 803-804 each with an [.1cache 813-814 and L2 cache
823-824, respectively; a home agent 830b with cache man-
agement logic 83156 and a LLC 832a.

In one embodiment, the home agent 830, 830a-5 in FIGS.
8A-C includes cache management logic 831, 831a-b for
implementing a cache coherency techniques described

US 9,436,605 B2

11

herein. In particular, the cache management logic 831,
831a-b manages the state of each of the cache lines utilizing
a cache management protocol which, as described in detail
below, combines the benefits of MOESI and MESIM' by
adding an M' state to the MOESI protocol. Additionally, the
home agent 830, 8304-b may couple the cores (and caches)
to an interconnect such as a quick path interconnect (QPI) or
other suitable type of interconnect to couple the cores
801-806 to a system memory 840 and/or other system
components.

It should be noted, however, that the underlying principles
of the invention are not limited to the specific processor
architectures illustrated in FIGS. 8 A-C. The embodiments of
the invention described herein may be implemented within
virtually any type of multi-core processor or multi-processor
system.

Each of the cache levels shown in FIGS. 8A-C may
include “caching agents” for communicating with the home
agents to implement the cache management protocols
described herein. For example, when a particular processor
or core requires access to a cache line, the caching agent
associated with the cache holding that cache line may enter
into a transaction with the home agent to modify the state
associated with the cache line (e.g., moving the state from
“Modified” to “Invalid,” etc). The terms “caching agent”
and “cache” may be used interchangeably herein (e.g., when
referring to a “peer” cache or a “requesting” cache as set
forth below)

In multi-processor systems such as shown in FIG. 8C,
cache coherence flows are architected and designed to
manage the cross socket overhead in an efficient manner.
The memory bandwidth (bandwidth to memory) and inter-
connect bandwidth (e.g., QPI) are typically at a premium
and the specific architecture and/or implementation choices
of cache coherence protocols define how well this band-
width is utilized, the power efficiency of the component, and
ultimately the delivered application performance.

The processing of non-ownership reads (loads, RdData
(read data) transactions in QPI) that encounter modified data
(Modified (M) state data or M-line) in a peer caching agent
(CA) require special attention. When a read (Rd') request
encounters a M-line in the local socket (e.g., processor 890
in Socket 1 in FIG. 8C), it is satisfied from the local cache
without any additional actions external to the processor. For
example, the CAs associated with caches 811-812 or 821-
822 in FIG. 8C may satisfy the Rd request locally, without
affecting the caches external to processor 890. However,
when the ‘Rd’ encounters a M-line in a peer processor (e.g.,
processor 891), there are several options available:

Option 1. Downgrade the peer copy to Shared (S) state
and forward a shared copy (S, F) to the requester while
writing back the modified data to memory.

Option 2. The Owned (O) state (in processors which
support it) allows multiple/simultaneous shares, while
allowing one of the sharers to maintain a dirty but non-
exclusive copy of the data. With O-state support, the peer
copy is downgraded to Shared (S) and the cache line
forwarded to the requester in the O state (where the requester
then has the exclusive right to make changes to the cache
line). No memory update is required.

Option 3. Downgrade the peer to the Invalid (I) state and
forward the line to the requester in the Exclusive (E) state
while writing back the modified data to memory. The E state
indicates that this cache has the only valid copy of the line.

Option 4. Downgrade the peer to the I state and forward
the line to the requester in the Modified' (M') state. No
memory update is performed. The M' state is different from

10

15

20

25

30

35

40

45

50

55

60

65

12

the Modified (M) state in that a subsequent non-ownership
read to the line from a peer processor will result in down-
grading the line to S state and forwarding a shared copy (S,
F) to the requester while writing back the modified data to
memory.

These options may be evaluated against certain factors to
understand the benefits and drawbacks of each. One con-
sideration is the behavior of each option on migratory data
flows in which the sockets successively read and then write
a shared address. In a migratory data scenario, the requestor
will issue a data read that hits an M-line in a peer caching
agent, which it will then later follow up with a write of its
own. Flows of this sort are common in server workloads.
The second item to consider is the degree to which each
option is able to reduce the number of writes that get issued
to memory when M-state cache lines are snooped by non-
exclusive read requests (“i1WBs”). This second item is
relevant to both performance and power consumption.

Option 1 evaluates poorly on both of the metrics listed
above. By providing the requestor that hits an M-line in the
peer caching agent with an S copy, this option requires an
additional ownership request be issued to the home agent
830 during migratory data flows (with corresponding invali-
date transactions transmitted out to the other sockets in the
system). In addition, it does nothing to reduce iWBs to
memory since every non-exclusive read that hits an M-line
in a peer caching agent will result in an immediate iWB.

Option 2 minimizes the iWBs since existence of an
O-state enables the caching agents in the system to transition
to sharing the line without requiring the dirty data be written
back to memory first. But as with option 1, it still does
nothing to aid with migratory data flows.

Option 3 is optimized for migratory data flows. Providing
an E-state copy of the line to the first reader enables the
reader to immediately write the line if it wishes without
having to request ownership again. However, like option 1,
option 3 does nothing to reduce iWBs to memory since
every non-exclusive read that hits an M-line in a peer
caching agent must trigger an immediate iWB to enable the
transition to E-state at the requestor.

Option 4 is a variant of option 3 that is able to avoid the
initial iWB to memory by forwarding a modified copy to the
first reader, and only transitioning to a non-dirty state if a
second reader comes along before the first reader modifies
its exclusive copy of the data a second time. When a read
data (RdData) transaction encounters a peer M-state, the
peer is downgraded to I and the line forwarded in the M-state
to the requester (no iWB is required). However, the line is
filled into the requester in a M' state where M' behaves
exactly like an M-line from a coherence perspective, except
that it additionally signifies that the line was forwarded in an
M state in response to a RdData request. The M'/M distinc-
tion enables the system to handle the next reader differently
and avoids the weakness of an endlessly ping-ponging of
stale M-state data which is would occur if an ordinary
M-state was used by the reader. If the RdData from the first
reader is followed by another remote RdData request, this
second RdData encounters a M' line in the first requester’s
LLC (as opposed to M). The actions outlined in option 1
above are then followed, i.e., downgrade the present owner
to S, and forward a shared (S, F) copy to the requester along
with a iWB. Hence, option 4 both handles the migratory data
flow cleanly, without degenerating to an endless ping-
ponging of the M-state if the threads keep sharing but stop
writing the line, while also delaying the iWB until the
second reader. Option 4 is then able to eliminate the iWB
completely, but only if the first reader also writes the line.

US 9,436,605 B2

13

However, for workloads that have more readers than writers
of the shared lines, no iWBs are eliminated.

One embodiment of the invention provides an additional
improvement upon the above options that eliminates all
iWBs to memory, without sacrificing any of the benefits that
Option 4 provides on migratory data flows. In one embodi-
ment, when a RdData encounters a peer M-state, the flow of
option 4 is initially followed, placing an M' copy of the line
in the requestor’s cache. However, if another reader makes
a request before the first reader re-modifies the line, the
inclusion of the O-state enables the system to transition to
sharing the line without writing the dirty copy out to
memory, thereby enabling the same reduction in iWB as
Option 2.

FIGS. 9-10 illustrate a series of transactions between a
first caching agent (A) a second caching agent (B) (poten-
tially in a different processor from A) a home agent 830 and
a memory 840. The MESIM' protocol is implemented in
FIG. 9 and a MESIM'O cache coherency protocol in accor-
dance with one embodiment of the invention is implemented
in FIG. 10.

Referring first to FIG. 9, the cache line is initially within
cache A in the invalid (I) state and within cache B in the
modified (M) state, as indicated. In response to a read data
(RdData) request from cache A, the home agent 830 sends
a snoop data (SnpData) signal to cache B which changes the
cache line from the M state to the I state at 901 and forwards
a copy of the cache line (Data_M) to cache A which
transitions the line from the I state to the M’ state at 902. The
M' state is sometimes referred to herein as a “second
modified” state while the M state is simply referred to as the
“modified” state, or the “first modified” state.

In response to a subsequent RdData request for the line
from cache B, the home agent 830 sends a SnpData signal
to cache A which transitions the cache line from the M' state
to the shared (S) state and forwards a copy of the cache line
(DataC_S/F) to cache B which transitions the line from the
1 state to the shared/forwarded (S/F) state at 904.

In response to a subsequent request for ownership of the
cache line from cache A (RdInvOwn), cache A transitions
the line from the S state to the I state, the home agent 830
sends a snoop signal to cache B, which transitions the cache
line from the S state to the I state at 906. Upon receiving the
response from cache B, the home agent 830 sends an
indication to cache A that it is now the exclusive owner of
the cache line. Thus, cache A transitions the cache line from
the I state to the E state at 907.

FIG. 9 may be contrasted with FIG. 10 which illustrates
one embodiment of a MESIM'O cache coherency protocol.
The cache line is initially within cache A in the invalid (I)
state and within cache B in the modified (M) state, as
indicated. In response to a read data (RdData) request from
cache A, the home agent 830 sends a snoop data (SnpData)
signal to cache B which changes the cache line from the M
state to the I state at 1001 and forwards a copy of the cache
line (Data_M) to cache A which transitions the line from the
I state to the M' state at 1002.

In response to a subsequent RdData request for the line
from cache B, the home agent 830 sends a SnpData signal
to cache A which transitions the cache line from the M' state
to the shared (S) state at 1003 and forwards a copy of the
cache line (DataC_O) to cache B. However, in this embodi-
ment, cache B transitions the cache line from the I state to
the Owned (O) state at 1004 (rather than the S/F state).

In response to a subsequent request for the cache line from
cache A (RdlnvOwn), cache A transitions the line from the
S state to the I state, the home agent 830 sends a snoop signal

10

15

20

25

30

35

40

45

50

55

60

65

14

to cache B (SnooplnvOwn), which transitions the cache line
from the O state to the I state at 1006. Cache B then forwards
the data directly to cache A (Data_M) which transitions the
cache line from the I state to the M state at 1007.

Thus, this embodiment eliminates all iWBs to memory,
without sacrificing any of the benefits that Option 4 above
provides on migratory data flows. When a RdData encoun-
ters a peer M-state, the flow of option 4 is initially followed,
placing an M' copy of the line in the requestor’s cache (at
1002 in FIG. 10). However, if another reader makes a
request before the first reader re-modifies the line, the
inclusion of the O-state (at 1004 in FIG. 10) enables the
system to transition to sharing the line without writing the
dirty copy out to memory, thereby enabling the same reduc-
tion in iWB as Option 2.

One embodiment of a method is illustrated in FIG. 11. The
illustrated method may be implemented on any of the
processor/system architectures shown in FIGS. 8 A-C, but is
not limited to any particular architecture.

At 1101, in response to a read data (RdData) operation
directed to a particular cache line, a peer M state for the
cache line is detected (i.e., the line exists in a peer cache in
a modified state). In response, at 1102, an M' copy of the
cache line is forwarded to the first requestor’s cache. At
1103, a second requestor requests the cache line before the
line is modified by the first requestor. In response, the cache
line is forwarded to the second requestor in an owned (O)
state and, at 1105, the cache line is set to the shared (S) state
in the first requestor’s cache. Consequently, transitioning to
the O state in this situation allows the cache line to be shared
without writing the dirty copy out to memory, thereby
preserving memory bandwidth.

An additional optimization may be employed with respect
to the memory reads shown when the Read Data request
(RdData) arrives at the home agent 830 in both FIGS. 9 and
10. These data reads are required to retrieve the directory
state for the cache line when the request arrives at the home
agent 830, and also to ensure a copy of the data is available
in the event that none of the peer caching agents forward
data to the requestor.

As illustrated in FIG. 12, one embodiment of the home
agent 830q implements a directory cache 1200 which stores
and maintains an indication as to whether each cache line is
cached exclusively by a remote caching agent without
requiring a read of the directory bits in memory. The
existence of the directory cache 1200 increases the benefits
of the M'O state even further. In one embodiment, the cache
management logic 831a updates the directory cache 1200
with the identification code of the caching agent (e.g., the
caching agent Node ID) that has the modified copy of the
line based on the reception of the RspFwdl (RdData HitM)
or RspFwdO (RdData HitM' or HitO) indications. These
responses indicate that the line is not just exclusive but has
been modified in a processor cache, which allows the home
agent 830a to assume that the line cannot be dropped silently
by the processor cache without first issuing a write back to
the home agent 830a. This enables a directed snoop message
to be sent only to the caching agent which has the M' or O
state copy of the line when the incoming request is a
non-ownership request (ownership requests may still require
a snoop broadcast). In one embodiment, the S state lines are
changed to the I state (invalidated) while the O state caching
agent forwards M data to the requestor. Since a cache-to-
cache transfer of the cache line to the requestor is guaranteed
in such a case, the initial read of the memory at the home
agent is not required.

US 9,436,605 B2

15

FIGS. 13A-B illustrate this functionality for MESIM' and
MESIM'O, respectively. Note the reduction in traffic
between the home agent and memory as the result of
directory hits 1301-1303 (for MESIM' in FIG. 13A) and
1311-1313 (for MESIM'O in FIG. 13B). Note also that
MESIM'O in FIG. 13B has no memory accesses at all (e.g.,
when the caching agents in the system keep the line cached).

There are numerous benefits realized by the embodiments
described herein for any system/processor implementation,
particularly those with large caches and coherent sharing of
data across the caches. By way of example, and not limita-
tion, multi-threaded server workloads that frequently share
data would realize particularly significant gains in perfor-
mance.

Embodiments of the invention may include various steps,
which have been described above. The steps may be embod-
ied in machine-executable instructions which may be used to
cause a general-purpose or special-purpose processor to
perform the steps. Alternatively, these steps may be per-
formed by specific hardware components that contain hard-
wired logic for performing the steps, or by any combination
of programmed computer components and custom hardware
components.

As described herein, instructions may refer to specific
configurations of hardware such as application specific
integrated circuits (ASICs) configured to perform certain
operations or having a predetermined functionality or soft-
ware instructions stored in memory embodied in a non-
transitory computer readable medium. Thus, the techniques
shown in the figures can be implemented using code and
data stored and executed on one or more electronic devices
(e.g., an end station, a network element, etc.). Such elec-
tronic devices store and communicate (internally and/or with
other electronic devices over a network) code and data using
computer machine-readable media, such as non-transitory
computer machine-readable storage media (e.g., magnetic
disks; optical disks; random access memory; read only
memory; flash memory devices; phase-change memory) and
transitory computer machine-readable communication
media (e.g., electrical, optical, acoustical or other form of
propagated signals—such as carrier waves, infrared signals,
digital signals, etc.). In addition, such electronic devices
typically include a set of one or more processors coupled to
one or more other components, such as one or more storage
devices (non-transitory machine-readable storage media),
user input/output devices (e.g., a keyboard, a touchscreen,
and/or a display), and network connections. The coupling of
the set of processors and other components is typically
through one or more busses and bridges (also termed as bus
controllers). The storage device and signals carrying the
network traffic respectively represent one or more machine-
readable storage media and machine-readable communica-
tion media. Thus, the storage device of a given electronic
device typically stores code and/or data for execution on the
set of one or more processors of that electronic device. Of
course, one or more parts of an embodiment of the invention
may be implemented using different combinations of soft-
ware, firmware, and/or hardware. Throughout this detailed
description, for the purposes of explanation, numerous spe-
cific details were set forth in order to provide a thorough
understanding of the present invention. It will be apparent,
however, to one skilled in the art that the invention may be
practiced without some of these specific details. In certain
instances, well known structures and functions were not
described in elaborate detail in order to avoid obscuring the

10

15

20

25

30

40

45

50

55

60

16

subject matter of the present invention. Accordingly, the
scope and spirit of the invention should be judged in terms
of the claims which follow.

What is claimed is:

1. A method comprising:

detecting a first operation associated with a cache line at

a first requestor cache, the cache line being a block of
date;

detecting that a copy of the cache line exists in a first

cache in a modified (M) state;

forwarding the copy of the cache line from the first cache

to the first requestor cache and storing the copy of the
cache line in the first requestor cache in a second
modified (M) state;

transitioning the copy of the cache line in the first cache

to an invalid () state;

detecting a second operation associated with the cache

line at a second requestor cache;

responsively forwarding the copy of the cache line from

the first requestor cache to the second requestor cache
and storing the copy of the cache line in the second
requestor cache in an owned (O) state if the copy of the
cache line has not been modified in the first requestor
cache; and

setting the copy of the cache line to a shared (S) state in

the first requestor cache.

2. The method as in claim 1 wherein the M' state indicates
that a cache line has been modified in the first cache and read
into the first requestor cache but has not yet been written
back to memory.

3. The method as in claim 1 wherein the O state indicates
that the second requestor cache has one of several valid
copies of the cache line, but has the exclusive right to make
changes to it.

4. The method as in claim 3 wherein the S state indicates
that the first requestor cache has a shared copy of the cache
line but do not currently have the right to make changes to
it.

5. The method as in claim 1 wherein the first cache, the
first requestor cache, and the second requestor cache are peer
caches.

6. The method as in claim 5 wherein the first cache, the
first requestor cache, and the second requestor cache are
either all level 1 (LL1) caches or all Level 2 (L.2) caches.

7. The method as in claim 1 further comprising:

storing and maintaining a directory cache to provide an

indication as to whether the cache line is cached
exclusively in a cache without requiring a read of
directory bits from memory.

8. The method as in claim 1 wherein the first cache is
located on a different processor from the first requestor
cache, and/or the first requestor cache is located on a
different processor from the second requestor cache, and/or
the first cache is located on a different processor from the
second requestor cache.

9. The method as in claim 1 wherein the first cache is
located on a different core from the first requestor cache,
and/or the first requestor cache is located on a different core
from the second requestor cache, and/or the first cache is
located on a different core from the second requestor cache.

10. The method as in claim 1 wherein each of the first
cache, first requestor cache, and second requestor cache
comprise caching agents communicating with a home agent.

11. A processor comprising:

a first caching agent to detect a first operation associated

with a cache line at a first requestor cache, wherein the

US 9,436,605 B2

17

cache line being a block of data, and further detecting
that a copy of the cache line exists in a first cache in a
modified (M) state;

a second caching agent to forward the copy of the cache
line from the first cache to the first requestor cache, the
first caching agent to store the copy of the cache line in
the first requestor cache in a second modified (M') state,
and the second caching agent further to transition the
copy of the cache line in the first cache to an invalid (I)
state;

a third caching agent to detect a second operation asso-
ciated with the cache line at a second requestor cache;

the first caching agent to responsively forward the copy of
the cache line from the first requestor cache to the third
caching agent, the third caching agent to store the copy
of the cache line in the second requestor cache in an
owned (O) state if the copy of the cache line has not
been modified in the first requestor cache; and

the first caching agent to transition the copy of the cache
line to a shared (S) state in the first requestor cache.

12. The processor as in claim 11 wherein the M' state
indicates that a cache line has been modified in the first
cache and read into the first requestor cache but has not yet
been written back to memory.

13. The processor as in claim 11 wherein the O state
indicates that the second requestor cache has one of several
valid copies of the cache line, but has the exclusive right to
make changes to it.

14. The processor as in claim 13 wherein the S state
indicates that the first requestor cache has a shared copy of
the cache line but do not currently have the right to make
changes to it.

15. The processor as in claim 11 wherein the first cache,
the first requestor cache, and the second requestor cache are
peer caches.

16. The processor as in claim 15 wherein the first cache,
the first requestor cache, and the second requestor cache are
either all level 1 (LL1) caches or all Level 2 (L2) caches.

10

15

20

25

30

35

18

17. The processor as in claim 11 further comprising:

a directory cache to provide an indication as to whether
the cache line is cached exclusively in a cache without
requiring a read of directory bits from memory.

18. The processor as in claim 11 wherein the first cache is
located on a different core from the first requestor cache,
and/or the first requestor cache is located on a different core
from the second requestor cache, and/or the first cache is
located on a different core from the second requestor cache.

19. A system comprising:

a memory for storing instructions and data;

a graphics processor for performing graphics operations
in response to certain instructions;

a network interface for receiving and transmitting data
over a network; and

a processor comprising:

a first caching agent to detect a first operation associated
with a cache line at a first requestor cache, wherein the
cache line being a block of data, and further detecting
that a copy of the cache line exists in a first cache in a
modified (M) state;

a second caching agent to forward the copy of the cache
line from the first cache to the first requestor cache, the
first caching agent to store the copy of the cache line in
the first requestor cache in a second modified (M') state,
and the second caching agent further to transition the
copy of the cache line in the first cache to an invalid (I)
state;

a third caching agent to detect a second operation asso-
ciated with the cache line at a second requestor cache;

the first caching agent to responsively forward the copy of
the cache line from the first requestor cache to the third
caching agent, the third caching agent to store the copy
of the cache line in the second requestor cache in an
owned (O) state if the copy of the cache line has not
been modified in the first requestor cache; and

the first caching agent to transition the copy of the cache
line to a shared (S) state in the first requestor cache.

#* #* #* #* #*

